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Earlier experimental assessments of fractal scale similarity in geometric proper-
ties of turbulent flows are extended to assess the applicability of multifractal
scale-similarity in the conserved scalar field {(x,?) and in the true scalar energy
dissipation rate field V{¢-V{(x, ). Fully resolved four-dimensional spatio-temporal
measurements from a turbulent flow at Re, ~ 41 and Re; =~ 3000 are analysed. The
utility of various classical constructs for identifying multifractal scale similarity in data
records of finite length is examined. An objective statistical criterion based on the
maximum allowable scale-to-scale variation L,(¢) in multiplier distributions <{P(M,)>
obtained from multifractal gauge fields is developed to allow accurate discrimination
between multifractal and non-multifractal scaling in finite-length experimental data
records. Results from analyses of temporal intersections show that for scales greater
than 0.03 A,/u, corresponding to 1.4 A,/u, the scalar dissipation field clearly
demonstrates a scale-invariant similarity consistent with a multiplicative cascade
process that can be modelled with a bilinear multiplier distribution. However, the
conserved scalar field from precisely the same data does not follow any scale similarity
consistent with a multiplicative cascade at scales below 0.5 A,/u. At larger scales, there
are indications of a possible scale-invariant similarity in the scalar field, but with a
fundamentally different multiplier distribution.

1. Introduction

The highly intermittent nature of gradient quantities associated with velocity and
scalar fields in turbulent flows is the principal hindrance in the formulation of accurate
statistical closure methods for modelling these fields. In developing such models, one
of the key objectives is identification of the proper scale similarity rules that govern
scalar and velocity gradients over lengthscales and timescales that are sufficiently small
for the natural equilibrium among scales to be established. In two previous papers
(Frederiksen, Dahm & Dowling 1996, 1997; hereinafter referred to as Parts 1 and 2)
we used experimental data to assess the applicability of concepts from fractal geometry
for characterizing scale similarity in one-, two-, and three-dimensional spatial and
temporal intersections with various geometric properties of turbulent flows. Those
studies introduced objective statistical methods for determining if a given data record
with finite length was ‘as fractal as a known fractal gauge set having the same record
length’. Criteria were established for comparisons with both deterministically and
stochastically self-similar fractal gauge sets. The main result was that the geometry of
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scalar isosurfaces was found to be inconsistent with the concept of uniform fractal
scale similarity. However, the scalar energy dissipation support geometry from
precisely the same data showed uniform fractal scale similarity over the entire range of
scales. In the present study, these experimental assessments are extended to examine
the applicability of multifractal concepts for characterizing scale similarity in the entire
conserved scalar field {(x, ) and scalar energy dissipation rate field V{-V{(x,?) in
turbulent flows.

Fractal scaling assessments such as those in Parts 1 and 2 are concerned solely with
characterizing the geometry of a subset of the four-dimensional space (x, f) on which
some property associated with a field ux(x, ¢) is found. For the scalar dissipation field, for
instance, the set considered was the dissipation support, namely the subset of (x, 1)
where the dissipation V{-V{(x,r) exceeded a chosen threshold value, and it was the
geometric scale similarity properties of this set itself that were of interest. If a particular
type of scale similarity was applicable, then the set was termed ‘fractal’ and its
geometric scale similarity properties were characterized by its fractal dimension.

Multifractal scaling, on the other hand, is not concerned simply with the geometry
of any one particular subset, but rather with all the geometries of a specific family of
subsets that, collectively, describe the entire field u(x,?). For intermittent but
continuous fields, the subsets can be parameterized by local power law exponents in
J(x, 1), or equivalently by local exponents « in a set of measures u (x, ¢) derived from
1(x, 1), which for certain o describe local singularities in u(x, 7). If the geometries of all
the subsets associated with all the « display fractal scale similarity, then the field is
termed ‘multifractal’. In that case, it is the fractal dimension f of the subset associated
with each « that is of interest, and the resulting f(«) then characterizes the complete
scale-similarity properties of the entire field u(x, 7).

Early work (Mandelbrot 1974) used what were effectively primitive multifractal
concepts to predict divergence of higher-order moments of the turbulent energy
dissipation. Subsequent developments along similar lines led to the f-model of Frisch,
Sulem & Nelkin (1978) and the random p-model of Benzi et al. (1984) for the
distribution of energy dissipation in turbulent flows. The modern mathematical basis
of multifractal theory was subsequently developed by Hentschel & Procaccia (1983),
Frisch & Parisi (1985), and Halsey ef al. (1986). Since then, there has been extensive
activity aimed at applying this formalism to characterize various aspects of turbulent
flows. Sreenivasan (1991 «a, b) reviews much of the application of multifractal theory in
the context of turbulent flows, and models based on these multifractal concepts have
begun to appear.

However, direct experimental assessments of the applicability of multifractal scaling
to the similarity properties of turbulent flows have been limited. An early investigation
by Meneveau & Sreenivasan (1987), and a more detailed study by Meneveau &
Sreenivasan (1991), concluded that the turbulent energy dissipation field exhibited
multifractal characteristics. Meneveau (1991) subsequently used wavelet analyses to
investigate scale similarity in the dissipation field, and found results consistent with
multifractal scaling. More recently, Sreenivasan & Stolovitzky (1995) examined scale
similarity in detail and suggested the possibility of correlations in the ‘cascade’ process.
These assessments, however, were all based on the surrogate quantity (0u/0f)® in place
of the true kinetic energy dissipation rate field 2» X': X(x, t), owing to the difficulty in
measuring directly the full strain rate tensor field Z(x, ¢) in turbulent flows (Tsinober,
Kit & Dracos 1992; Su & Dahm 19964, b). In contrast, the true scalar energy
dissipation rate field DV{-V{(x,?) in turbulent flows has in recent years become
accessible via direct measurements of the full scalar gradient vector field V{(x, t) (e.g.
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Dahm, Southerland & Buch 1991 ; Southerland & Dahm 1994, 1996). Such dynamically
passive conserved scalar fields carry the signature of dynamics in the velocity field
in turbulent flows, and thus provide indirect access to the scale similarity properties of
the underlying flow itself.

Prediction and early measurements of a multifractal scalar energy dissipation field
in turbulent flows were reported by Prasad, Meneveau & Sreenivasan (1988) and
Sreenivasan & Prasad (1989). Numerical and analytical work by Ott & Antonsen
(1989) and Vardsi, Antonsen & Ott (1991) indicate multifractal scalar dissipation fields
to be a signature of chaotic flows (suggesting a possible link between mixing by
turbulent motion and by chaotic advection). Possible multifractal similarity in the
conserved scalar field in turbulent flows has been postulated by Chechetkin, Lutovinov
& Turygin (1990) and Shivamoggi (1992), with no experimental evidence having yet
been presented.

The present study uses experimental data from fully resolved four-dimensional
spatio-temporal measurements of the conserved scalar field {(x, t) and scalar energy
dissipation rate field V{-V{(x, ) in turbulent flows to examine the applicability of
multifractal concepts for characterizing the scale-similarity properties of these fields.
We develop strict objective statistical criteria based on known multifractal gauge fields
to discriminate between multifractal and non-multifractal data, and then apply these
to test the hypothesis of multifractal scale similarity in the fields examined. In §2 below
we briefly summarize the experimental data used in the present study, and in §3 we
review the essential concepts of multifractal theory relevant to the present study.
Following this, §4 evaluates the utility of various constructs for identifying multifractal
scale similarity in data records of finite length, and then develops strict criteria for
judging the applicability of multifractal scaling in the present data. Results from
evaluation of these criteria for the {(x,f) and V{-V{(x,¢) fields are given in §5, and
conclusions regarding the applicability of multifractal scaling concepts for char-
acterizing the scale-similarity properties of turbulent flows are then drawn in §6.

2. Data characteristics

The fully resolved four-dimensional spatio-temporal experimental data used in this
study are the same as those used in Parts 1 and 2, and have been described in detail in
Part 1. Briefly, these data were obtained using laser-induced fluorescence for the mixing
of a dynamically passive Sc¢ ~ 2000 dye in the self-similar far field of an axisymmetric
turbulent jet in water. The measurement technique is described in detail in Dahm et al.
(1991) and Southerland & Dahm (1994, 1996). The concentration field {(x, ¢) of a laser
fluorescent dye carried by the jet fluid was measured repeatedly in time at as many as
256® points within a small three-dimensional spatial volume in the jet far field. A highly
collimated laser beam was swept in a raster fashion through this volume, and the
resulting laser induced fluorescence from dye-containing fluid imaged onto a high-
speed 256 x 256 element photodiode array. The array output was serially acquired at
8-bits true digital depth and continuously written in real time at rates up to 9.1 MB s™*
to a 3.1 GB high-speed parallel-transfer disk bank capable of accommodating more
than 50000 such 2562 data planes. The resulting measured fluorescence intensity field
was subsequently converted to the true dye concentration as described in Southerland
& Dahm (1994, 1996).

As detailed in Parts 1 and 2 (see also Southerland & Dahm 1994, 1996), the spatial
and temporal resolution achieved resolves all the fine-scale structure associated with
the local turbulent mixing process in the flow. The characteristic scale of the pixel image
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volume (AxAyAz)'/? and its maximum dimension (Az) are less than half the local strain-
limited molecular diffusion lengthscale A,, and thus less than 35 of the local
Kolmogorov scale A, = (v*/¢)"/*. Similarly, the intervolume time in all cases was less
than half the scalar diffusion scale advection time 7, = A,,/u, and thus less than 555 the
Kolmogorov timescale 7, = (v/¢)"/?. Together with the high signal quality achieved,
the resulting spatio-temporal resolution allows accurate simultaneous differentiation of
the measured conserved scalar field data {(x, 7) in all three spatial dimensions and in
time to determine all three components of the true scalar gradient vector field V{(x, ?).
This in turn permits determination of the true scalar energy dissipation rate field
V{-V{(x, t). Examples of the resulting four-dimensional data for {(x, ) and V{- V{(x, 1)
were shown in Part 1; additional examples are given in Southerland & Dahm (1994,
1996).

Each four-dimensional measurement produces the scalar and dissipation field
values at over three billion individual points throughout a small spatio-temporal region
in the flow. This region consists of 256 points in each measurement plane, spanning
two inner (viscous) lengthscales A, and + of the outer lengthscale ¢ in each direction,
and six planes in the third spatial direction, and can accommodate up to 8000 points
spanning 120 inner timescales (A?/r) and 2 outer timescales (§/u) in the temporal
direction. Thus, the largest scaling range is accessible in the temporal dimension,
where 12 multiples of two in scales, corresponding to 4096-point data records, can be
analysed. For this reason, the present study is based on examining the applicability of
multifractal scale similarity in 4096-point temporal intersections through these {(x, 1)
and V{-V{(x, ) fields. Note that Taylor scale Reynolds numbers are Re, ~ 41, with
outer scale Reynolds numbers Re; ~ 3000 for these data.

The structure of velocity and scalar fields in turbulent shear flows at scales near
and below A, should be quasi-universal even for the present moderate Reynolds
numbers, as evidenced by DNS studies of Jiménez et al. (1993). The Re, for the present
data are well within the range of values over which the DNS results of Jiménez et al.
showed Reynolds-number-independent collapse on inner variables of the fine-scale
vortical structures of the flow. Moreover, high-wavenumber spatial scalar spectra from
these same data (Southerland, Dahm & Dowling 1995) show the k! scaling predicted
by Batchelor (1959) for large Sc mixing in turbulent flows. As a result, although the
present measurements are from turbulent jets at a single Re,, the geometric scaling
properties of the fine scales contained in them are believed to be largely representative
of the scaling properties at the inner scales of all turbulent shear flows.

3. Multifractal concepts

Multifractal fields are created by the repeated application of a scale-invariant
multiplicative process to an essentially arbitrary initial field. Such a multiplicative
process, perhaps due to the continual stretching and folding of the conserved scalar
field by the underlying time-varying strain rate and vorticity fields, is not implausible
in a turbulent flow, with the required scale-invariance being naturally satisfied for
scales sufficiently removed from any direct external influences. Among the simplest of
such scale-invariant multiplicative processes is the random multiplicative mapping
(‘cascade’), in which a set of multipliers M that map the field from one iteration to the
next is chosen at random from a prescribed distribution P(M). After a sufficiently large
number of such iterations, the precise details of the resulting field, say p(x, ¢), depend
on the distribution P(M) and the multiplicative mapping itself, but its scale-similarity
properties will attain a universal form that is the central object of multifractal theory.
As noted in §1, the primary interest is in the resulting fractal dimension f(a) of the
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subset of (x, ) on which the singularities of various strengths « are concentrated in a
set of measures p (x;,t;) derived from u(x, f).

To determine f(«) in practice, the field of interest u(x, ¢) is averaged over individual
boxes of size ¢ centred at (x;, ¢;) to produce measures u (x;, ¢;) giving the fraction of the
quantity within any given box as

e, 0, ¢
x 0y, L

where L is the record length. The set of measures is then used to construct a set of
partition functions

(1)

(x5, 1) =

N(e)

Xyle) = § e (x; 1], 2

where N(e) is the total number of boxes of scale ¢ and ¢ is any real number. Thus, for
g =0, X (e) reduces to the box-counting technique of fractal analysis (see Part 1),
while for other ¢ values, a weighted box-counting occurs. Indeed, just as in fractal
analysis, it is the scaling of X (¢) with ¢ that is of central interest, with scale similarity
for any ¢ yielding a power law scaling as

X () ~ e, 3)

Thus, the X (¢) provide one means to assess the applicability of multifractal scale
similarity.
The exponents 7(g) in the power-law scalings in (3), if they exist, can be related to

f(x) as
alg) = %r(q), (4a)

S(dq) = qoq) —1(q). (4b)

Alternatively, they can be equivalently expressed in the generalized Renyi dimensions
D, (Hentschel & Procaccia 1983) as

D, =1(q)/(q—1). )

In terms of local singularity strengths, if u(x, f) has a power-law scaling at x” of the
form u(x) ~ |x —x'|*', with o > 0, then from (1) the resulting measure p (x’) ~ ¢* is
said to have a singularity of strength « in ¢ at x’. If all points with the same « form a
set with fractal dimension f{«), then from (2) and (3) the relations between 7(¢) and f(«)
in (4) follow readily. It should be noted that this physical interpretation of f(«) as the
dimension of the set of points with singularity strength o can fail under certain
circumstances. It appears to be correct for invariant hyperbolic sets (Bohr & Rand
1987; Collet, Lebowitz & Porzio 1987) but Ott, Grebogi & Yorke (1989) suggest that
for non-hyperbolic attractors it may hold only over a limited range of a values.
Detailed treatments of the multifractal formalism are given by Falconer (1990) and
Pietgen, Jurgen & Saupe (1992).

4. Multifractal scale-similarity criteria

Assessment of the applicability of these multifractal scale-similarity concepts to
experimental data from turbulent flows requires a criterion for discerning fields with
genuine multifractal scaling from those that have some other type of similarity. This
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FIGURE 1. An example of the construction of a binomial set with m2 = 0.4. The highly intermittent
nature of the set becomes apparent as n-—>o00. The non-random nature of this set, however, makes it
a poor surrogate for turbulent fields.

section evaluates the reliability of various potential means for identifying multifractal
scale similarity in data records of finite length, and develops strict criteria that allow
reliable discrimination between multifractal and non-multifractal fields.

4.1. Partition functions X (e) and scaling exponents 1(q)

The most direct criterion for assessing the applicability of multifractal scale similarity
in any given field u(x, 7) is the requirement for power-law scaling in the X (¢) in (3), and
thus for linear scaling in log X (¢) versus log(¢/L). Analogous with Parts 1 and 2, the
linearity necessary to judge rigorously any given field either to be or not to be
multifractal can be determined from the X (e¢) scaling demonstrated by known
multifractal gauge fields having the same record lengths as the present data. Such
multifractal gauge fields can be readily constructed in one dimension from the repeated
application, either deterministically or stochastically, of a scale-similar multiplicative
process.

Among deterministically scale-similar gauge fields, the simplest are those generated
by the classical binomial multiplicative process. At each stage of the construction, the
‘mass’ contained in any given cell is distributed over two cells, each of which is half
the size of the previous stage, with fraction M = m of the mass always going into the
left-hand cell and M = 1 —m into the right-hand cell. For any choice of m % 0.5, the
result of repeated application of this binomial process produces a highly intermittent
field u(x) after sufficiently many repetitions. This is shown in figure 1 for m = 0.4 after
12 repetitions, producing a record of length N = 4096 cells that matches the temporal
record lengths of the experimental data in §2. This intermittent x(x) can be analysed
as in §3 to yield the partition functions X (¢) in (2). The resulting log X (¢) vs. log(¢/L)
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FIGURE 2. (a) The logarithm of the partition function X (¢) and (b) its derivative 7 (¢) obtained from
analysis of the binomial set shown in figure 1. The linear scaling of log, X, (¢) vs. —log,e/L reflected
in the scale independence of 7 ,(¢) indicates multifractal scaling.

from the choice of m in figure 1 are shown in figure 2 (a) for —20 < ¢ < 20. Note that
these partition functions clearly demonstrate the linearity expected for such a
multifractal field. The corresponding scaling exponents 7(g), obtained by differentiating
at each scale ¢/L in figure 2(a), are given in figure 2(b). These clearly show the scale
independence for each ¢ that is expected from the inherently multiplicative construction
of u(x).

The results in figure 2 are typical for deterministically scale-similar gauge fields u(x)
with record length N = 4096. However, as noted in Part 1, any scale similarity in
turbulent flows is more likely to be stochastic than deterministic. It is thus necessary
to establish standards analogous to those in figure 2 for the required linearity in X (¢)
and scale independence in 7(g) applicable for stochastically scale-similar fields with the
same record length. Such gauge fields can be readily generated by extending the
procedure in figure 1 to a random multiplicative cascade process with a scale-
independent multiplier distribution P(M). As in figure 1, at each stage the mass in any
given cell is again distributed over two cells, each half the size of the previous stage, but
the mass multiplier M for each such division is now determined randomly from the
scale-independent distribution P(M). Choosing the bilinear distribution shown in
figure 3(a) produced the intermittent x(x) in figure 3(b) after 12 repetitions, again
giving N = 4096. Note that, owing to the stochastic nature of the generation process,
arbitrarily many different realizations u(x) can be produced from the same P(M). Each
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FIGURE 3. (a) The multiplier distribution P(M) used in a random multiplicative cascade to
produce the intermittent gauge field x(x) shown in part (b).

such x(x) differs in detail, but has the same underlying multiplicative scale-similarity
properties. For the particular realization in figure 3 (), the resulting log X (¢) versus log
(¢/L) are shown in figure 4(a), and the corresponding 7(g) are shown in figure 4(b).
These should be compared with the corresponding results for the deterministically
scale-similar gauge sets in figure 2.

It is immediately evident that, with finite-length records of stochastically scale-
similar fields, the scale-independent 7(q) signature characteristically associated with
multifractal fields is achieved only for relatively small |g|. This closely parallels results
seen from the fractal analyses in Parts 1 and 2. In those cases, statistical convergence
based on very large numbers of individual gauge set realizations was used to overcome
this uncertainty. This was practical in the restricted dimensional space of the fractal
analyses in Parts 1 and 2. However, an analogous approach for the present multifractal
analyses is prohibitive owing to the increased variability for different ¢ values in X (¢)
and 7(g). As a consequence, for the present record lengths, a criterion based on linearity
of X,(e) and scale independence of 7(¢) alone does not appear to provide a meaningful
way to test for multifractal scale similarity in data records from the turbulent flow
measurements.

This becomes fully apparent when analogous results in figure 5 for a negative test
case, namely X (¢) and 7(g) from manifestly non-multifractal gauge sets, are compared
with those in figures 2 and 4. In this case, u(x) is constructed from a lognormally
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FIGURE 4. (@) The logarithm of the partition function X (¢) and (b) its scaling exponents 7(¢) obtained
from the multiplicative gauge field in figure 3 (b). The stochastic nature of the multiplicative process
leads to apparent scale dependencies in the scaling exponents 7(g), in contrast to the analogous results
for deterministic multiplicative process in figure 2.

distributed random variable without any underlying scale-similar multiplicative
process, again with record length N = 4096. The resulting partition functions and their
scaling exponents in figures 5(a) and 5(b), respectively, show no clear means to
objectively distinguish them from the corresponding results in figures 4 (a) and 4(b) for
the stochastically scale-similar gauge set, save for a statistical criterion that, as noted
above, is computationally prohibitive in this study given the number of degrees of
variability in X (¢) and 7(¢). Accordingly we conclude that, for the present study, X (e)
and 7(¢) cannot be reliably used to determine whether or not a given record with the
present record length displays multifractal scale similarity.

4.2. Dimensions f(a) and D,

For the same gauge sets u(x) considered in §4.1, results for the dimensions f(«) and D,
are shown in figures 6-8. To obtain f(«) in (4) and D, in (5), the 7(¢) involved are from
least-squares linear fits through the X (e) results in figures 2(a), 4(a) and 5(a). The
binomial multiplicative process in figure 1 and the random multiplicative cascade
process with scale-independent bilinear multiplier distribution P(M) in figure 3 allow
analytical solutions for f(«) and D, which are shown for comparison. The results for
the (deterministic) binomial multiplicative process in figure 6 are in relatively good
agreement with the analytical solution. Note that in this case the interpretation of the
o as singularity strengths in the u(x, ¢) field, and f(«) as the fractal dimensions of the
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FIGURE 5. (a) The logarithm of the partition function X (¢) and (b) its scaling exponents 7(¢)
obtained from a lognormally distributed random gauge field.

sets on which they reside, appears reasonable since 0 < f(«) < 1. For m < 0.5, f—0 as
o0ty = —log, (1—m) =~ 0.74 occurring when ¢ -+ o0, and o —«,,,, = —log,m &
1.32 occurring when g —— 0.

The corresponding results for f(a) from the multiplicative cascade process in
figure 7(a) appear to be in at least equally good agreement with the analytical result
as for the binomial result in figure 6 (@). This is somewhat surprising in view of the fact
that the 7(g) results for these two fields in figures 2(b) and 4(b) appear to show very
different agreement with the ideal of scale-invariant scaling exponents that are central
to multifractal theory. Evidently, f(«) conveys little information about the requisite
scale-independence of the scaling exponents 7(¢). Equally important is that the physical
interpretation of f(«) becomes more problematic in such cases, with negative
dimensions occurring for many P(M) distributions and f(«) —— o0 as &« — 0 and & —00.
This hampers the description of f(«) as the dimension of the set of points with
singularity strength «. The interpretation can be salvaged, however, through large
deviation theory, where the method of intersections allows interpreting negative
dimensions as intersections in a higher-dimensional space of an exceedingly sparse set
(Mandelbrot 1990, 1991 ; Meneveau & Sreenivasan 1991). Similarly, the result in figure
7(b) shows D, exceeding the support dimension D, =1 for ¢ <0, with D, —c0 as
q—>—1.

The point is that none of these pathologies in f(e) or D, can be viewed as criteria for
rejecting a hypothesis of multifractal scale similarity in a given data record, since even
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binomial gauge set in figure 1. , numerical; ——, exact.

manifestly multifractal gauge fields produced by genuine multiplicative cascade
processes with scale-invariant multiplier distributions show these features. Moreover,
these features have nothing to do with the numerical algorithm used to determine f{c)
and D, from u(x), since they are present even in the analytical results for such gauge
fields. As a consequence, f(«) and D, alone do not appear to provide a meaningful way
to test for multifractal scale similarity in data records from the turbulent flow
measurements.

This again becomes completely apparent from results in figure 8, where f(«) and D,
are presented for the inherently non-multifractal lognormally distributed random field
u(x) constructed without any scale-similar multiplicative process, for which X (¢) and
7(g¢) were shown in figure 5. Both curves do not appear in any way obviously
distinguishable from the corresponding results for multifractal gauge fields in figures
6 and 7. Accordingly, we conclude that, for the present study, while f(«) and D, are of
inherent interest they provide no means to assess the applicability of multifractal scale
similarity.

4.3. Multiplier distributions P(M)
Owing to the inadequacy of X (¢) and 7(¢) in §4.1 and f(«) and D, in §4.2 for reliably
discriminating between multifractal and non-multifractal fields u(x), a further criterion
based on scale invariance of the multiplier distribution P(M), originally proposed by
Sreenivasan (1991 5) and Chhabra & Sreenivasan (1992), is examined. The field x(x) is
used to obtain a P(M,) distribution at each scale ¢ by effectively reversing the
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multiplicative process used to generate the multifractal gauge sets in §4.1. The
multiplier M, between successive scales at any point (x;, #;) is thus determined as

J f w(x, )dxdt
[x—x;l<e/a J|t—t;]<e/a
j f w(x, )dxdet
x—x;<eJ|t—t;|<e

where, for the present temporal intersections, the integrals extend over time only. If the
field is multifractal, then P(M,) may, in general, be expected to show scale invariance,
and its moments related to the scaling exponents 7(¢), and hence to the dimensions f(x),

“® 7(g) = — Dy—log, (M, (7)

where D, is the support dimension and « is the number of subcells into which each cell
is divided in the scale-similar mass division process (here a = 2).

For the binomial gauge set in figure 1, the original scale-invariant multiplier
distribution P(M) used to generate u(x) consisted of delta functions at the multiplier
values M = 0.4 and 0.6. When this u(x) is decomposed into multiplier values via (6),
the results obtained for P(M,) are shown in figure 9. Except at the smallest scales, the
multiplier distributions obtained do not agree particularly well with the original P(M)
used to generate u(x), but this is merely because the integration limits in (6), in general,
do not coincide with the cell boundaries used in the multiplicative construction process

Me(xi5 [2') =

; (6)
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FIGURE 8. The dimensions (a) f(«) and (b) D, from 7(g) in figure 5 for the lognormally distributed
random gauge field.

for u(x); if they do, then the correct P(M) is exactly recovered. Moreover, as will be
seen below, for most distributions this effect is small. Note also that the P(M,) are not
completely scale-invariant. At very small scales, there are significant variations in the
distributions obtained from (6), presumably due again to the effects of coincidence with
cell boundaries. However, for a wide range of intermediate scales (spanning a range of
2 in lengthscales) the resulting P(M) are virtually identical, as would be expected for
a field generated by a scale-similar multiplicative process. Thus, the scale invariance of
P(M)) over at least a limited range of scales provides a potential means for assessing
multiplicative scale similarity.

Moreover, unlike X, (¢) and 7(¢) in §4.1, the scale similarity in the multiplier
distributions P(M,) seen in figure 9 appears to be unaffected by the change from a
deterministic to a stochastic character in the underlying multiplicative process. This
can be seen in figure 10, where P(M,) distributions from (6) are shown for the x(x) in
figure 3 obtained from the random multiplicative cascade process with bilinear P(M).
At scales sufficiently large for the coincidence with cell boundaries to be negligible, the
multiplier distributions obtained are essentially scale-invariant, and are in good
agreement with the original bilinear distribution in figure 3(a). This is found for all
stochastic multiplicative processes examined, and we conclude that a criterion based on
scale invariance in P(M,) appears to provide a reliable means for assessing the
applicability of multifractal scale similarity in experimental data with record lengths
comparable to the present data.
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FIGURE 9. The multiplier distributions P(M,) from (6) for the binomial gauge field u(x) in figure 1.

This is further supported by the lack of any scale invariance in the multiplier
distributions P(M,) in figure 11 obtained from the random lognormal field u(x)
examined previously in figure 5 and 8§, which has no underlying scale similarity. Note
that, unlike the corresponding results for multifractal sets in figures 9 and 10, the P(M )
for the random set in figure 11 clearly do not show scale invariance over any range of
scales. For random sets, as ¢ increases the 4, become increasingly accurate estimates of
the average value of u, and so the width of the peak in P(M,) near M =0.5 is
proportional to ¢ /%, and as a result P(M,) can never become scale invariant.

4.4. The scale invariance criterion L,(¢)

Based on the results in §§4.1-4.3, a criterion based on scale invariance in the multiplier
distributions P(M,) appears to provide the only reliable means for accepting or
rejecting the hypothesis of scale similarity in any given field wx(x). This section
determines rigorous statistical bounds on the maximum allowable scale-to-scale
variation in P(M,) for accepting or rejecting the hypothesis of multifractal scale
similarity over any range of scales .

This is done by determining the L, difference norm between { P(M,)) at successively
smaller scales ¢ and 3¢ as

L) = f [CP(M)> —CP(M. )| dM. ®)
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FIGURE 11. The multiplier distributions P(M,) obtained from (6) for 2000 individual realizations of
non-multifractal gauge fields u(x) generated by a lognormally distributed random variable. These
results exhibit no scale invariant multiplier distributions over any range of scales.
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gauge sets with P(M) obtained from () the scalar dissipation field data, and (b) the scalar field data.
Results are shown for varying numbers n of independent realizations of multifractal gauge sets (——)
and random log normal gauge sets (——-).

The average multiplier distributions are obtained from (6) over n independent
realizations of scale-similar gauge fields u(x) generated by a multiplicative process with
the same P(M). The resulting L,(¢) difference norm values will thus depend on the
choice of P(M) used to generate the gauge fields, on the total number n of individual
realizations of the gauge field, and on the record length of the gauge fields. The latter
is addressed by using gauge sets having the same 4096-cell record length as the
experimental data. The former is addressed by computing L,(¢) for gauge fields
constructed with multiplier distributions P(M) obtained directly from each type of
data being analysed.

Thus figure 12(a) shows the resulting L,(¢) for various n when P(M) is set to the
multiplier distribution obtained from the measured scalar dissipation field values (see
figure 18b). These curves provide the standard for assessing the hypothesis of
multifractal scale similarity in any » independent records from the scalar dissipation
field data V{-V{(x, ). Similarly, figure 12(b) shows the slightly different L, (¢) that
result for the P(M') obtained from the measured conserved scalar field values (see figure
195), and provides the test for the hypothesis of multifractal scale similarity in any »
independent records from the conserved scalar field data {(x,?). Also shown for
comparison in both cases is the L,(¢) that results from the random lognormal field u(x)
in figure 11.

Finally, note that, as n increases, the scale-to-scale variation L,(¢) in {P(M)>
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temporal resolution achieved. Note the intermittent nature of the scalar energy dissipation rate field.

decreases owing to statistical convergence, however, L,(¢) will not go to zero as n—oo.
This is a result of the finite record length of each of the gauge fields, and thus is most
apparent at the smallest analysis scales (i.e. toward the right-hand edge of each panel
in figure 12). On the other hand, the increase in L,(¢) at large scales is due to the smaller
number of independent multipliers M, from (6) that can be obtained with increasing
scale size ¢ in any finite length record. This effect can be offset by increasing the number
n of independent records over which {P(M,)>, and hence L,(¢), is computed.

5. Results for {(x, ) and V{-V{(x, 1)

Multifractal scale-similarity analyses of the type in §4 were conducted on nearly 2000
temporal intersections, each with 4096-point record lengths, through the data in §2 for
the conserved scalar field {(x, ¢), and on the same nearly 2000 intersections through the
scalar energy dissipation rate field data V¢-V{(x,7). An example of a typical
intersection through each of these fields is shown in figure 13. The scalar dissipation
field in figure 13(a) can be compared, for example, with the intermittent u(x) fields
resulting from the deterministic and stochastic scale-similar multiplicative processes in
figures 1 and 3(b).
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FIGURE 14. (a) The logarithm of the partition function X, (¢) and () its scaling exponents 7(q)

obtained from analyses of nearly 2000 temporal intersections through the scalar energy dissipation
rate data V{-V{(x, 7).

5.1. Partition functions X (¢) and scaling exponents 1(q)

Each individual intersection produces a set of partition functions X (¢). The average
of these nearly 2000 partition functions, log (X (¢)>, that results from the dissipation
field intersections is shown in figure 14(a), with the corresponding (X (¢)) from the
scalar field intersections shown in figure 15(a). These log (X (¢)) curves were differen-
tiated to obtain the average scaling exponents {7(g))> shown in figures 14(b) and 15(b).
The results in figures 14 and 15 can be compared with those in figure 2 for the deter-
ministic scale-similar binomial gauge field, in figure 4 for the random multiplicative
gauge field, and in figure 5 for the random log-normal variable. Although the results
for {(x,7) in figure 15 show more nearly linear log (X (¢)) curves, and thus scaling
exponents {7(g)> that are more nearly scale independent, than do the results in figure
14 for V{-V{(x, ), as was noted in §4.1 while these features are characteristic of multi-
fractals they are not good criteria for accepting or rejecting the hypothesis that a given
4096-point data record displays multifractal scale similarity. Indeed, the results in
figure 5 for the non-multifractal gauge field show roughly equally linear log X (¢) and
constant 7(g) as the results for the genuinely multifractal gauge field in figure 4.
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obtained from analyses of nearly 2000 temporal intersections through the conserved scalar data

UUx, 1).

5.2. Dimensions f(a) and D,

The 7(g) from least-squares fits in figures 14(b) and 15(b), over the range of ¢ where
§5.3 indicates scale-similarity, yield the results in figures 16 and 17 for the dimensions
f(e) and D, via (4a, b). These f(«) and D, curves have a similar form as the results for
the multiplicative cascade process in figure 7, with a long tail of negative f(«)
values for relatively large o, and no moments D, for ¢ < —1. However, as noted in
§4.1, while this makes the physical interpretation of f(a) more problematic, it provides
no grounds for rejecting (or accepting) the hypothesis that these data records display
multifractal scale similarity.

5.3. Multiplier distributions P(M)

Figures 18 and 19 show the results obtained for the average multiplier distributions
{P(M)> from (6) for the same nearly 2000 intersections with {(x, ) and V{-V{(x, ¢).
The distributions in figure 18 give a clear indication of a scale similar multiplicative
process underlying the scalar dissipation rate field V¢-V{(x, 7). Note that figure 18(b)
shows virtually identical multiplier distributions over a range of at least 2° in scale,
spanning from 1.4 A, /u < e < 1.0 A, /u. This range is essentially the same as that over
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FIGURE 16. (a) The dimensions f(«) and (b) D, obtained from 7(q) in figure 14 for the scalar
energy dissipation rate field V{-V{(x, 1).

which the multifractal gauge set in figure 10, generated by the scale-similar
multiplicative process with the bilinear P(M') in figure 3, also showed scale-independent
multiplier distributions P(M,). Indeed, the multiplier distributions are found to be very
nearly bilinear, in apparent agreement with previous measurements of Sreenivasan
(1991 b) and Chhabra & Sreenivasan (1992) for the kinetic energy dissipation surrogate
(Qu/01)*. The peaks in (P(M,)) at scales ¢ < 1.4 A,,/u in figure 18 (a) are most probably
due to the influence of the diffusive cutoff process at these scales (see Part 2). At scales
€ > 1.0 A, /u, figure 18(a) shows departures from the scale-similar {P(M,)) in figure
18(b), but if a random multiplicative process were terminated at this scale, then the
multiplier distribution at larger scales should quickly collapse to M, = 0.5, as was seen
in figure 11. However, the results in figure 18 (a) show only a very slow approach to this
value, indicating that there may be scale-similar dynamics even at scales above
1.0 A,/u. This will be clarified in §5.5.

The corresponding multiplier distributions {P(M,)) in figure 19 for {(x, ) show
some similarities with those for V{-V{(x,?) in figure 18, but there are important
differences. The range of scales over which figure 19(b) shows a scale-independent
distribution spans only a factor of at least 2%, ranging from 0.5A,/u <e¢ <A,/ u.
Note also that the shape of the multiplier distribution over this range of scales is
fundamentally different from the bilinear form in figure 18(b). More importantly, for
scales ¢ < 0.5 A, /u, figure 19(a) shows that in this case (P(M,)) rapidly departs from
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the scale-similar form in figure 19 () and collapses to the value M, = 0.5. However, this
collapse is for a different reason to that in figure 11. In the scalar field, at sufficiently
small scales the values in adjacent cells become nearly the same owing to the dominant
influence of the molecular diffusion process at those scales.

5.4. The scale invariance criterion L,(¢)

Figure 20 shows the L,(¢) values obtained by comparing the scale-to-scale differences
in the {P(M,)) results of figures 18 and 19. Results for the scalar dissipation rate field
V{-V{(x,t) are shown in figure 20 (a), where the corresponding threshold criteria from
§4.4 for n fully independent multifractal gauge fields generated from a scale-invariant
P(M) are shown for comparison. Note that the multiplier distribution P(M) used to
generate each of the n multifractal gauge fields was that in figure 18(5). Also shown is
the corresponding curve for the random lognormal set, which has no underlying scale-
similarity.

It is apparent that the L, (¢) values for the dissipation field in figure 20(a) are
distinctly different from the results for the random lognormal set. They follow roughly
the same trend as do the curves for the multifractal gauge fields, but do not approach
the threshold curve for n =2000. This is due to the correlated nature of the
intersections. Although there are nearly 2000 intersections used in the analysis, they all
are temporal intersections at slightly different spatial locations through the same four-
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FIGURE 18. The multiplier distributions {(P(M,)) from (6) obtained from analyses of nearly 2000
temporal intersections through the scalar energy dissipation rate data V{-V{(x,t). Note that (b)
shows the results over scales from —log,¢/T = 0,...,4 while (a) shows the results from smaller and
larger scales.

dimensional data set V¢-V{(x,7). As a consequence, all are correlated to varying
degrees, with the result being to render the number of effectively independent
intersections in the {P(M,)) calculations dependent on the scale e. This will be
accounted for in §5.5. The largest departure from the shape of the L,(¢) curves for the
multifractal gauge fields is seen at the largest scales, where the effect of the correlation
is strongest and thus the effective number of independent intersections is smallest. At
very small scales, the L,(¢) result from the dissipation field data also departs
significantly from the curves for the multifractal gauge fields, but this is to be expected
since the diffusive cutoff will become significant as ¢— A, /u. There is, moreover, a
noticeable ‘bump’ at ¢ & 0.25 A, /u in the local L,(¢) curve from the dissipation field
data that could potentially reflect the non-fractal inclusions of roughly the same scale
found in Part 2 to be associated with the signature of the diffusive cutoff in the
dissipation field.

The corresponding L,(¢) curve from the conserved scalar field data {(x, ) is shown
in figure 20(b), where the multiplier distribution P(M) used to generate each of the n
multifractal gauge fields is from figure 19(b). As was already suggested by the
multiplier distributions in §5.3, the scalar field apparently displays very different scale-
similarity properties over this range of scales compared to those of the dissipation field
in figure 20(a). While the shape of the curve at relatively large scales in figure 20(b) is
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similar to that for the dissipation field, this is influenced strongly by the reduction in
correlation with scale e. That effect will be addressed in §5.5. However, with decreasing
¢ the L,(¢) curve from the scalar field data becomes fundamentally different from that
for the dissipation field data as well as those from the multifractal gauge fields. This
suggests that, at least for ¢ < 0.5 A,/u, the conserved scalar field does not display
multifractal scale similarity. That conclusion will be seen from §5.5 as well, and
furthermore appears consistent with the findings from Part 2.

5.5. Effect of correlations on L,(¢)

Since all of the nearly 2000 temporal intersections through each of the {(x,7) and
V{-V{(x, 1) fields considered in §5.4 are from the same four-dimensional data set at
slightly different spatial locations, all are correlated to varying degrees. Thus, the
number #n of effectively independent intersections is significantly smaller. Moreover, the
degree of correlation in the multipliers M, obtained from these intersections via (6)
depends on ¢. Thus the effective number of independent intersections will increase
with decreasing ¢, and this appears consistent with the L,(¢) results in figure 20(a, b)
(but not with the different forms of L,(¢) from the scalar and dissipation field data
for e <2 A,/u).

This effect can be corrected for by measuring how strongly correlated the multipliers
M _ are at each scale ¢ for any two intersections separated by a distance r. The resulting



150 R. D. Frederiksen, W. J. A. Dahm and D. R. Dowling
(@)

0.4

0.3F

Ll(e) 0.2}

0.1F

(b)

0.4 ——

BRE RE bk b S
0.3+ [ A 1
! Tt
! e
| -
|

Ll(e) 0.2F / 1

0.1}

—logz e(4,/u)
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correlations p,,(r; ¢) are shown in figure 21 for both the conserved scalar field data and
the dissipation field data. Note that the variation in the multiplier correlations with ¢
is different for the two fields. In the dissipation field, the correlations strictly increase
as ¢ increases, as might be expected. However, in the scalar field, the correlation of
multipliers is considerable at the smallest ¢ and then decreases to a minimum at ¢ &
A,/u before again increasing. This may provide information for extending random
multiplicative cascades to higher-dimensional models of turbulence fields. For the
present purposes, however, these correlations show that in both fields over the entire
range of ¢ only about six effectively independent intersections can be obtained.

The L,(¢) criteria from §4.4 can thus be recomputed with this much smaller number
of independent intersections accessible by the data. The multiplier distributions P(M)
used to generate the multifractal gauge fields are once again taken from figures 18(b)
and 19(b), with the resulting criteria shown in figure 22. Also shown in these figures are
the L,(¢) values for the dissipation field and the conserved scalar field, and for the
random lognormal field.

It is readily apparent from the result in figure 22 (@) that the dissipation field clearly
obeys multifractal scale similarity for all scales ¢ > 0.03 A,/u (and since Sc ~ 2000 in
the present data this corresponds to ¢ > 1.4 A, /u). Whether it is the viscous scale or the
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FIGURE 21. The correlation p as a function of r, the separation distance, between M () for the nearly
2000 temporal intersections through (a) the scalar dissipation field data V{-V{(x,7) and (b) the
conserved scalar field data {(x, ).

scalar diffusion scale that sets the scaling cutoff is not obvious, and would require
comparable measurements at different Sc. Irrespective of this, the principal result from
figure 22 (a) is that the scalar energy dissipation field in turbulent flows displays a scale-
invariant similarity consistent with a multiplicative cascade process that can be
modelled with the bilinear multiplier distribution in figure 18 (b).

It is also apparent from figure 22 (b) that the conserved scalar field clearly does not
follow any multifractal scale similarity consistent with a multiplicative cascade process
at scales below ¢ < 0.5 A,/u. At larger scales, there is some indication of a possible
scale-invariant similarity of this type in figure 22(b). However, the limited range of
scales accessible by the present measurements precludes equally strong conclusions
from being drawn for this range of scales. Nevertheless, the primary result from figure
22(b) is that while the scalar dissipation field is clearly multifractal at the small scales,
the conserved scalar field is clearly not.

6. Discussion and conclusions

The results above were based on strict criteria for determining the applicability of
multifractal scale similarity of the type produced by scale-invariant multiplicative
cascades for describing the scale similarity properties of turbulent flows. Standards for
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fields. Also shown are ——, the corresponding results for random log-normal fields.

assessing multifractal scaling in experimental data with relatively short record lengths
were established from multifractal gauge fields having the same record length, and the
suitability of various constructs for discriminating between multifractal and non-
multifractal similarity were examined. With these standards, an ensemble of data
records could be objectively analysed to determine if it displayed scale similarity that
was ‘as multifractal as a given class of gauge sets having the same record length.’
Classical features of multifractal fields, including the linearity of the partition
functions log X (¢) with scale log(e/L), and the corresponding scale-independence of
their scaling exponents 7(g), were found to be satisfied for multifractal gauge fields
generated by multiplicative cascades of the deterministic type (e.g. figure 2), but not by
cascades of the stochastic type (e.g. figure 4). Similarly, various apparent pathologies
in the dimensions f(«) and D, found in fully random gauge fields (e.g. figure 8) were
also found in the dimensions resulting from gauge fields produced by stochastic scale-
similar multiplicative cascades (e.g. figure 7). Thus, none of these constructs provided
any obvious means of distinguishing between multifractal and random sets. However,
multiplier distributions {(P(M,)> from (6) were found to provide a sensitive test of
scale-invariance (e.g. figures 9-11), with the resulting scale-dependence in the L,(¢)
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norm in (8) characterizing the maximum allowable scale-to-scale differences in the
multiplier distributions for multifractal fields (e.g. figure 124, b).

These criteria were used to examine multifractal scale similarity in nearly 2000
individual 4096-point temporal intersections through conserved scalar field data
{(x, 1) and true scalar energy dissipation rate field data V¢-V{(x, t) from fully-resolved
four-dimensional spatio-temporal measurements of the type in §2. The L,(¢) results in
figure 22(a) for the dissipation field clearly showed multifractal scale similarity for
scales larger than 0.03 A, /u, which for the present Sc¢ ~ 2000 corresponds to scales larger
than 1.4 A, /u. In other words, the dissipation field is multifractal down to essentially
the scalar diffusive scale. On the other hand, the corresponding results in figure 22 (b)
clearly showed that the conserved scalar field does not show multifractal scaling for
scales smaller than 0.5 A /u. At larger scales, the present results do not exclude
multifractal scaling in the conserved scalar field, and indeed show some indications of
possible multifractal scale similarity, but the limited range of scales accessible by these
data do not permit an unequivocal assessment at these scales.

The present finding of multifractal scaling in the scalar energy dissipation field
appears to support earlier findings of Prasad er al. (1988) and Sreenivasan & Prasad
(1989), who based their assessments on apparent linearity in log X, (¢) with scale
log(¢/L) and the corresponding scaling exponents 7(g). However, the shape of the
dimension spectrum f(«) found in those studies appears to be fundamentally different
from the result in figure 16(a). In particular, the long tail for large o found in the
present result does not appear in their result (e.g. figure 19 of Sreenivasan 1991a),
which instead more closely resembles the f(«) from the binomial set in figure 6.
Accordingly, the dimensions D, in figure 16(b) are also quite different from the
corresponding result in figure 20 of Sreenivasan (1991a). Nevertheless, there are
similarities in the present multiplier distributions {P(M,)) in figure 18(b) and those of
Chhabra & Sreenivasan (1992), with both showing nearly similar bilinear distributions
for a =2 in (6). Moreover, many of the present results for the scale similarity
properties of the true scalar dissipation rate field V{-V{(x,7) closely resemble
analogous results for surrogates based on (du/0¢)? of the kinetic energy dissipation rate
field (e.g. Sreenivasan 1991 a; Meneveau & Sreenivasan 1991). The present results are
also consistent with the findings in Parts 1 and 2 that the scalar dissipation rate field
is concentrated on a support geometry that displays fractal scale similarity.

The scale invariance and bilinear form of the multiplier distributions {P(M,)) in
figure 18 provide the basis for a simple model of the scalar dissipation rate field in
turbulent flows. In particular, a stochastic multiplicative scale-similar cascade with
essentially this same bilinear distribution (see figure 3 a) produces one-dimensional sets
of the type in figure 3(b), which should be compared with typical one-dimensional
intersections through the true scalar dissipation field, such as figure 13(a). To the
extent that the multifractal scale similarity found in this study extends to the entire
range of scales, the implication is that the resulting multifractal sets from this simple
cascade model should be statistically indistinguishable from the true dissipation fields.

It is, of course, possible that at least some aspects of the results found here will still
depend on the outer scale Reynolds number Re;. As noted in §2, the present Reynolds
numbers are necessarily low to permit full resolution of all spatial and temporal scales
in the conserved scalar field, and to permit simultaneous measurements over all three
space dimensions and time. Similar measurements at significantly higher Reynolds
numbers are not yet possible. However, the present data, with Re, ~ 41 and Re; ~
3000, appear to be at sufficiently high Reynolds numbers for most aspects of the scalar
field structure to have become largely Re independent. This is supported by DNS
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results of Jiménez et al. (1993), who find Reynolds-number-independent collapse on
inner variables of the fine-scale structure of flows at values of Re, as low as 35, and by
the demonstrated k! scaling in high-wavenumber spatial scalar spectra from these
same data (Southerland & Dahm 1994, 1996). Moreover, results from Part 1 indicated
that effects of noise in these measurements were sufficiently small to leave the scale-
similarity properties of both the conserved scalar field and the scalar dissipation rate
field essentially unaffected. As a result, we conclude that these results for the
applicability of multifractal scale similarity to the scalar and dissipation fields in the
present data are largely representative of the scaling properties at the inner scales of all
turbulent shear flows.

The three- and four-dimensional scalar field data used in this study were obtained at
Michigan as part of the doctoral dissertation work of Dr Kenneth B. Southerland,
under support from the Air Force Office of Scientific Research (AFOSR) Airbreathing
Combustion program under Grant No. AFOSR-89-0541 and the Turbulence Structure
and Control program under Grant No. F49620-92-J-0025.
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